
International Journal of Research in Advent Technology, Vol.4, No.2, February 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

26

Sentiment Analysis using FP-Growth and FIN algorithm
Ms. Prajacta Lobo, Prof. Rajendra Gawali,

LokmanyaTilak College of Engineering, Mumbai University
Email: prajlopes@gmail.com , gawalird@gmail.com

Abstract-A retail outlet wants to understand the sentiments of customer or buyer based on their reviews on
certain products. This information will enable the retailer to understand the buyer’s actual thoughts after
purchase. It will help retailer not only to classify certain products in same segment to be more liked and preferred
than the other. It will also enable buyers to make better purchase decisions based on feedback provided by
previous customers who purchased the same product and provided their review.
Sentiment analysis examines customer reviews by identifying frequently used common words among various
feedbacks that customers submit after purchase is done. These common words can help identify if customer feels
positive about the product or he is unhappy about the product.

Index Terms- Itemset Mining Algorithm; FP-Growth; FIN; Sentiment Analysis

1. INTRODUCTION

The Internet offers an effective, global platform for E-
commerce, communication, and opinion sharing. It
has several blogs devoted to diverse topics like
finance, politics, travel, education, sports,
entertainment, news, history, environment, and so
forth, on which people frequently express their
opinions in natural language. Mining through these
terabytes of user review data is a challenging
knowledge engineering task. Recent years researchers
have proposed approaches for mining user expressed
opinions from several domains such as movie reviews,
political debates, restaurant food reviews, and product
reviews and so forth. Our focus in this paper is
efficient feature extraction, sentiment polarity
classification, learning and comparing algorithm in
finding frequent itemset from online product reviews
dataset.
The main difficulty in analysing online users’ reviews
is that they are in the form of natural language. While
natural language processing is inherently difficult;
analyzing online unstructured textual reviews is even
more difficult. Some of the major problems with
processing unstructured text are dealing with spelling
mistakes, in correct punctuation, use of non-dictionary
words or slang terms, and undefined abbreviations.
Often opinion is expressed in terms of partial phrases
rather than complete grammatically correct sentences.
So, the task of summarizing noisy, unstructured online
reviews demands extensive Pre-processing [1].
The objective of this paper is to analyse customer
reviews submitted on different product. Now a day’s
huge amount of data and information are available for
everyone on the internet or in printed form. This data
can be stored in many different kinds of databases and
information repositories. We have conducted an
experiment study on this data to find frequent itemset.
For this we have used FP-Growth and FIN algorithm,

by making variation in Apriori algorithm [2-6]. It
improves performance over Apriori for lower
cardinality and it does not follow generation of
candidate-and-test method. It also reduces the
scanning of database and needs only two scanning of
database. Also we have conducted a comparative
study between these two algorithms for finding
product sentiment using frequent itemset.

2. PROPOSED SYSTEM

The proposed system has been implemented in Java.
The architectural overview of this system is given in
fig. 1 and each component is detailed subsequently.

Fig. 1. System Architecture

International Journal of Research in Advent Technology, Vol.4, No.2, February 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

27

The major parts of this implementation are:

• Analysis of review text with more accurate

recommendations for products.
• Text to transaction processing
• Finding frequent itemset from this transaction

using FP-Growth algorithm
• Finding frequent itemset from this transaction

using FIN algorithm
• Comparing result of both these algorithms in

terms of memory usage and execution time taken

2.1. Select algorithm

2.1.1. FP-Growth algorithm

FP-Growth works in a divide and conquer way. This is
efficient and scalable method to complete set of
frequent patterns. It allows frequent itemset discovery
without candidate itemset generation. It requires two
scans on the database. FP-Growth computes a list of
frequent items sorted by frequency in descending
order (F-List) during its database scan. In its second
scan, the database is compressed into a FP-tree. Then
FP-Growth starts to mine the FP-tree for each item
whose support is larger than ξ by recursively building
its conditional FP-tree. The algorithm performs
mining recursively on FP-tree. The problem of finding
frequent itemsets is converted to searching and
constructing trees recursively [7-9, 12].

Algorithm 1: FP-tree construction [10]

Procedure : FP-tree Calculate
Input : candidate item set c
Output : the support of candidate item set c
(1) Sort the items of c by decreasing order of
header table;
(2) Find the node p in the header table which
has the same name with the first item of c;
(3) q = p.tablelink;
(4) count = 0;
(5) while q is not null
(6) {
(7) If the items of the itemset c except last
item all appear in the prefix path of q
(8) Count + = q.count ;
(9) q = q.tablelink;
(10) }
(11)return count/ totalrecord ;

Algorithm 2: FP-Growth [12]

Input: A database DB, represented by FP-tree
constructed according to Algorithm 1, and a minimum
support threshold ?.
Output: The complete set of frequent patterns.

Method: call FP-growth(FP-tree, null).

Procedure FP-growth(Tree, a) {
(01) if Tree contains a single prefix path then //
Mining single prefix-path FP-tree {
(02) let P be the single prefix-path part of Tree;
(03) let Q be the multipath part with the top branching
node replaced by a null root;
(04) for each combination (denoted as ß) of the nodes
in the path P do
(05) generate pattern ß ∪ a with support = minimum
support of nodes in ß;
(06) letfreq pattern set(P) be the set of patterns so
generated;}
(07) else let Q be Tree;
(08) for each item ai in Q do { // Mining multipath FP-
tree
(09) generate pattern ß = ai ∪ a with support = ai
.support;
(10) construct ß’s conditional pattern-base and then
ß’s conditional FP-tree Tree ß;
(11) if Tree ß ≠ Ø then
(12) call FP-growth(Tree ß , ß);
(13) letfreq pattern set(Q) be the set of patterns so
generated;}
(14) return(freq pattern set(P) ∪ ∪ freq pattern set(Q)
(freq pattern set(P) × freq pattern set(Q)))}

2.1.2. FIN algorithm:

FIN uses novel data structure called Nodeset, for
mining frequent itemsets. Different from recently used
data structures called Node-list and N-list, Nodesets
require only pre-order (or post-order code) of each
node without the requirement of both pre-order and
post-order. This causes that Nodesets consume less
memory and are easy to be constructed. FIN [11-12]
directly discovers frequent itemsets in a search tree
called set-enumeration tree. For avoiding repetitive
search it also adopts a pruning strategy names
promotion, which is similar to Children-Parent
Equivalence pruning to greatly reduce the search
space.

Algorithm 3: (POC-tree construction [11])

Input: A transaction database DB and a minimum
support n.
Output: A POC-tree and F1 (the set of frequent 1-
itemsets).

1. [Frequent 1-itemsets Generation]
According to n, scan DB once to find F1, the set of
frequent 1-itemsets (frequent items), and their
supports.

International Journal of Research in Advent Technology, Vol.4, No.2, February 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

28

Sort F1 in support descending order as L1, which is
the list of ordered frequent items. Note that, if the
supports of some frequent items are equal, the orders
can be assigned arbitrarily.

2. [POC-tree Construction]
The following procedure of construction POC-tree is
the same as that of constructing a FP-tree (Han, Pei,
& Yin,2000).
Create the root of a POC-tree, Tr, and label it as
‘‘null’’.
For each transaction Trans in DB do the following.
Select the frequent items in Trans and sort out them
according to the order of F1.
Let the sorted frequent-item list in Trans be [p | P],
where p is the first element and P is
the remaining list.
Call insert tree ([p | P], Tr).
The function insert tree([p | P], Tr) is performed as
follows.
If Tr has a child N such that N.item-name = p.item-
name,then increase N’s count by 1;
else create a new node N, with its count initialized to
1,and add it to Tr’s children-list.
If P is nonempty, call insert tree(P, N) recursively.

3. [Pre-code Generation]
Scan the POC-tree to generate the pre-order of each
node by the pre-order traversal.

Algorithm 4: FIN algorithm [11]

Input: A transaction database DB and a minimum
support n.
Output: F, the set of all frequent itemsets.
(1) F £;
(2) Call Algorithm 3 to construct the POC-tree and
find F1, the set of all frequent 1-itemset;
(3) F2 £;
(4) Scan the POC-tree by the pre-order traversal do
(5) N currently visiting Node;
(6) iy the item registered in N;
(7) For each ancestor of N, Na, do
(8) ix the item registered in Na;
(9) If ixiy 2 F2, then
(10) ixiy.supportixiy.support + N.account;
(11) Else
(12) ixiy.supportN.account;
(13) F2 F2[{ixiy};
(14) Endif
(15) Endfor
(16) For each itemset, P, in F2 do
(17) If P.support< n |DB|, then
(18) F2 F2{P};
(19) Else
(20) P. Nodeset £;
(21) Endif

(22) Endfor
(23) Scan the POC-tree by the pre-order traversal do
(24) Nd currently visiting Node;
(25) iy the item registered in Nd;
(26) For each ancestor of Nd, Nda, do
(27) ix the item registered in Nda;
(28) If ixiy 2 F2, then
(29) ixiy.Nodesetixiy.Nodeset [Nd.N_info;
(30) Endif
(31) Endfor
(32) F F[F1;
(33) For each frequent itemset, isit, in F2 do
(34) Create the root of a tree, Rst, and label it by isit;
(35) Constructing_Pattern_Tree(Rst, {i | i 2 F1, i
 is}, £);
(36) Endfor
(37) Return F;

2.2. Select input data:

Primary source of data is Amazon [13], this dataset
contains product reviews and metadata, including
143.7 million reviews spanning May 1996 - July 2014.
Out of these huge data we obtain cell phone and its
Accessories review data, from which we obtain
approximately 1000 reviews. Product in this site has
large number of reviews. To obtain this data, we
started with a list of asin like strings (Amazon product
identifiers) obtained from the Internet Archive.
Sample review is as shown below. This large data file
can be open using Log Expert tool. This tool
downloaded from website [14]. This dataset is a
superset of existing publicly-available Amazon
datasets. Out of above fields we used reviewText (text
of the review) as input field in our analysis.

{ "reviewerID": "A2SUAM1J3GNN3B", "asin":
"0000013714", "reviewerName": "J. McDonald",
"helpful": [2, 3], "reviewText": "I bought this for my
husband who plays the piano. He is having a
wonderful time playing these old hymns. The
is at times hard to read because we think the book was
published for singing from more than playing from.
Great purchase though!", "overall": 5.0, "summary":
"Heavenly Highway Hymns", "unixReviewTime":
1252800000, "reviewTime": "09 13, 2009" }

where

• reviewerID - ID of the reviewer,
e.g. A1RSDE90N6RSZF

• asin - ID of the product, e.g. 0000013714

• reviewerName - name of the reviewer

• helpful - helpfulness rating of the review,
e.g. 2/3

• reviewText - text of the review

International Journal of Research in Advent Technology, Vol.4, No.2, February 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

29

• overall - rating of the product

• summary - summary of the review

• unixReviewTime - time of the review
(unix time)

• reviewTime - time of the review (raw)

2.3. Text to Transaction Processing with Data
cleansing

This involves cleaning the extracted data before the
analysis is performed. Here we are using custom logic
to keep only relevant words in review before
converting into transactions. Usually this involves
identifying and eliminating non textual content from
the textual dataset, and any information that can reveal
the identities of reviewers including: reviewer name,
reviewer location, review date etc.
We have prepared relevant word dictionary to
compare this input text data. This word dictionary
dataset has been downloaded from website [15-16].
This data is converted into input transaction file
format as a text file. An item is represented by a
positive integer. A transaction is a line in the text file.
In each line (transaction), items are separated by a
single space. It is assumed that all items within a same
transaction (line) are sorted according to a total order
(e.g. ascending order) and that no item can appear
twice within the same line.

2.4. Transaction to word mapping

After data cleansing is done, all the words are assigned
a transaction id and number of times such word occurs
in given review. Number of occurrences defines the
frequency of such word.
let’s say "Good" word is found in a review, so during
text to transaction processing, it is given a number '4',
now an entry will be made into a dictionary as
<4,"GOOD">.
When Good word is found multiple times, e.g. 8 times
we can say transaction 4 occurs 8 times in given
reviews. Hence, in a different collection, this
transaction will be represented as <4, 8> =
><transactionId, Frequency>. Hence while mapping
Frequency back to word we can say word "GOOD"
with transactionId 4 occurs 8 times.

2.5. Run selected algorithm

The output file format is also defined as a text file,
where each line represents a frequent itemset. On each
line, the items of the itemset are first listed. Each item

is represented by an integer and it is followed by a
single space. After, all the items, the keyword
"SUPP:" appears, which is followed by an integer
indicating the support of the itemset, expressed as a
number of transactions. For example, here fig. 2 is the
output file for this example. The first line indicates the
frequent itemset consisting of the item 5 and it
indicates that this itemset has a support of 2971
transactions.

Fig. 2. Output File

2.6. Algorithm run statistics

Both the program output statistics as displayed below
fig. 3 and fig. 4 were found with minimum support
taken as 0.5% and with the help of transaction to word
mapping dataset.This algorithm output statistics data
file is stored in dataset.

Fig. 3. FP-Growth output

International Journal of Research in Advent Technology, Vol.4, No.2, February 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

30

Fig. 4. FIN output

2.7. Comparisons of algorithms

The results of both these algorithms are stored in
database. Comparison is based on memory usage V/S
time taken by both algorithms to execute as displayed
below fig. 5.

Fig. 5. Comparison of FIN v/s FP Growth output

3. CONCLUSION

Sentiment analysis, a large majority of studies focus
on identifying the polarity of a given text, that is to
automatically identify if a review about a certain topic
is positive or negative.

In this paper we have found this polarity by finding
frequent itemset using proposed FP-growth and FIN
method by making variation in Apriori.
The method, described here is very simple and
efficient one. This is successfully tested for large data,
downloaded from Amazon. We have computed
performance comparison by comparing both
algorithms. The experimental result shows that FIN is
more efficient in terms of memory consumption but
more execution time taken compared to FP-growth.
Whereas both algorithms improves performance over
Apriori for lower cardinality and it does not follow
generation of candidate-and-test method. It also
reduces the scanning of database and needs only two
scanning of database.

REFERENCES

[1] Ms.AshwiniRao, Dr.Ketan Shah, “Filtering and
Transformation Model for Opinion
Summarization”, ISSN 2277-3061, Vol 13, No. 2.

[2] Minqing Hu and Bing Liu “Mining and
Summarizing Customer Reviews” Department of
Computer Science University of Illinois at
Chicago 851 South Morgan Street Chicago, IL
60607-7053 {mhu1, liub}@cs.uic.edu

[3] Baizhang Ma, Dongsong Zhang, Zhijun Yan and
Taeha Kim “An LDA and Synonym Lexicon
Based Approach to Product Feature Extraction
from online customer product review” Journal of
Electronic Commerce Research, VOL 14, NO 4,
2013, Beijing, 100081, China.

[4] Chih-Ping Wei, Yen-Ming Chen, Chin-Sheng
Yang and Christopher C. Yang “Understanding
what concerns consumers: a semantic approach to
product feature extraction from consumer
reviews” Springer-Verlag 2009.

[5] Haiping Zhang, Zhengang Yu, Ming Xu, Yueling
Shi “Feature-level Sentiment Analysis for
Chinese Product Reviews” Dept. of Computer
Science Hangzhou Dianzi University Hangzhou,
China, 310018.

[6] Haiping Zhang, Zhengang Yu, Ming Xu, Yueling
Shi “A MEMs-based Labeling Approach to
Punctuation Correction in Chinese Opinionated
Text”, National Natural Science Foundation of
China under Grant No.60973081 and
No.61170148, School of Computer Science and
Technology, Heilongjiang University, Harbin
150080, China.

[7] Florian Verhein, “Frequent Pattern Growth (FP-
Growth) Algorithm”, School of Information
Technologies, Copyright 2008 Florian Verhein,
The University of Sydney, Australia, January 10,
2008.

[8] Jiawei Han und Micheline Kamber, “Frequent
Item set Mining Methods”, Data Mining –
Concepts and Techniques.

International Journal of Research in Advent Technology, Vol.4, No.2, February 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

31

[9] HeikkiMannila, “Mining Frequent Patterns
without Candidate Generation: A Frequent-
Pattern Tree Approach”, Data Mining and
Knowledge Discovery, 8, 53–87, 2004.

[10] M Suman,T Anuradha, K Gowtham, A
Ramakrishna, “A Frequest Pattern Mining
Alogorithm based on FP-Tree Structure and
Apriori Algorithm”, ISSN: 2248-9622
www.ijera.com, Vol. 2, Issue 1, Jan-Feb 2012,
pp.114-116.

[11] Zhi-Hong Deng, Sheng-Long Lv “Fast mining
frequent itemsets using Nodesets”, 0957- �4174/
2014 Elsevier Ltd., School of Electronics
Engineering and Computer Science, Peking
University, Beijing 100871, China, 2014.

[12] https://en.wikibooks.org/wiki/Data_Mining_Algo
rithms_In_R/Frequent_Pattern_Mining/The_FP-
Growth_Algorithm.

[13] http://jmcauley.ucsd.edu/data/amazon/links.html
[14] http://logexpert.codeplex.com
[15] http://www.ashley-

bovan.co.uk/words/partsofspeech.html
[16] http://wordnet.princeton.edu/wordnet/download/c

urrent-version.

