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Abstract-A retail outlet wants to understand the sentiments of customer or buyer based on their reviews on 
certain products. This information will enable the retailer to understand the buyer’s actual thoughts after 
purchase. It will help retailer not only to classify certain products in same segment to be more liked and preferred 
than the other. It will also enable buyers to make better purchase decisions based on feedback provided by 
previous customers who purchased the same product and provided their review. 
Sentiment analysis examines customer reviews by identifying frequently used common words among various 
feedbacks that customers submit after purchase is done. These common words can help identify if customer feels 
positive about the product or he is unhappy about the product. 
 
Index Terms- Itemset Mining Algorithm; FP-Growth; FIN; Sentiment Analysis  

1. INTRODUCTION 

The Internet offers an effective, global platform for E- 
commerce, communication, and opinion sharing. It 
has several blogs devoted to diverse topics like 
finance, politics, travel, education, sports, 
entertainment, news, history, environment, and so 
forth, on which people frequently express their 
opinions in natural language. Mining through these 
terabytes of user review data is a challenging 
knowledge engineering task. Recent years researchers 
have proposed approaches for mining user expressed 
opinions from several domains such as movie reviews, 
political debates, restaurant food reviews, and product 
reviews and so forth. Our focus in this paper is 
efficient feature extraction, sentiment polarity 
classification, learning and comparing algorithm in 
finding frequent itemset from online product reviews 
dataset.  
The main difficulty in analysing online users’ reviews 
is that they are in the form of natural language. While 
natural language processing is inherently difficult; 
analyzing online unstructured textual reviews is even 
more difficult. Some of the major problems with 
processing unstructured text are dealing with spelling 
mistakes, in correct punctuation, use of non-dictionary 
words or slang terms, and undefined abbreviations. 
Often opinion is expressed in terms of partial phrases 
rather than complete grammatically correct sentences. 
So, the task of summarizing noisy, unstructured online 
reviews demands extensive Pre-processing [1]. 
The objective of this paper is to analyse customer 
reviews submitted on different product. Now a day’s 
huge amount of data and information are available for 
everyone on the internet or in printed form. This data 
can be stored in many different kinds of databases and 
information repositories. We have conducted an 
experiment study on this data to find frequent itemset. 
For this we have used FP-Growth and FIN algorithm, 
 

 
by making variation in Apriori algorithm [2-6]. It 
improves performance over Apriori for lower 
cardinality and it does not follow generation of 
candidate-and-test method. It also reduces the 
scanning of database and needs only two scanning of 
database. Also we have conducted a comparative 
study between these two algorithms for finding 
product sentiment using frequent itemset. 

2. PROPOSED SYSTEM 

The proposed system has been implemented in Java. 
The architectural overview of this system is given in 
fig. 1 and each component is detailed subsequently. 

Fig. 1.  System Architecture 
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The major parts of this implementation are:  
 
• Analysis of review text with more accurate 

recommendations for products. 
• Text to transaction processing 
• Finding frequent itemset from this transaction 

using FP-Growth algorithm 
• Finding frequent itemset from this transaction 

using FIN algorithm 
• Comparing result of both these algorithms in 

terms of memory usage and execution time taken 

2.1.  Select algorithm 

2.1.1. FP-Growth algorithm 

FP-Growth works in a divide and conquer way. This is 
efficient and scalable method to complete set of 
frequent patterns. It allows frequent itemset discovery 
without candidate itemset generation. It requires two 
scans on the database. FP-Growth computes a list of 
frequent items sorted by frequency in descending 
order (F-List) during its database scan. In its second 
scan, the database is compressed into a FP-tree. Then 
FP-Growth starts to mine the FP-tree for each item 
whose support is larger than ξ by recursively building 
its conditional FP-tree. The algorithm performs 
mining recursively on FP-tree. The problem of finding 
frequent itemsets is converted to searching and 
constructing trees recursively [7-9, 12]. 
 
Algorithm 1: FP-tree construction [10] 
 

Procedure : FP-tree Calculate 
Input : candidate item set c 
Output : the support of candidate item set c 
(1) Sort the items of c by decreasing order of 
header table; 
(2) Find the node p in the header table which 
has the same name with the first item of c; 
(3) q = p.tablelink; 
(4) count = 0; 
(5) while q is not null 
(6) { 
(7) If the items of the itemset c except last 
item all appear in the prefix path of q 
(8) Count + = q.count ; 
(9) q = q.tablelink; 
(10) } 
(11)return count/ totalrecord ; 
 
 

Algorithm 2: FP-Growth [12] 
 

Input: A database DB, represented by FP-tree 
constructed according to Algorithm 1, and a minimum 
support threshold ?. 
Output: The complete set of frequent patterns. 

 
Method: call FP-growth(FP-tree, null). 
 
Procedure FP-growth(Tree, a) { 
(01) if Tree contains a single prefix path then // 
Mining single prefix-path FP-tree { 
(02) let P be the single prefix-path part of Tree; 
(03) let Q be the multipath part with the top branching 
node replaced by a null root; 
(04) for each combination (denoted as ß) of the nodes 
in the path P do 
(05) generate pattern ß ∪ a with support = minimum 
support of nodes in ß; 
(06) letfreq pattern set(P) be the set of patterns so 
generated;} 
(07) else let Q be Tree; 
(08) for each item ai in Q do { // Mining multipath FP-
tree 
(09) generate pattern ß = ai ∪ a with support = ai 
.support; 
(10) construct ß’s conditional pattern-base and then 
ß’s conditional FP-tree Tree ß; 
(11) if Tree ß ≠ Ø then 
(12) call FP-growth(Tree ß , ß); 
(13) letfreq pattern set(Q) be the set of patterns so 
generated;} 
(14) return(freq pattern set(P) ∪ ∪ freq pattern set(Q)  
(freq pattern set(P) × freq pattern set(Q)))} 

 

2.1.2. FIN algorithm:  

 
FIN uses novel data structure called Nodeset, for 
mining frequent itemsets. Different from recently used 
data structures called Node-list and N-list, Nodesets 
require only pre-order (or post-order code) of each 
node without the requirement of both pre-order and 
post-order. This causes that Nodesets consume less 
memory and are easy to be constructed. FIN [11-12] 
directly discovers frequent itemsets in a search tree 
called set-enumeration tree. For avoiding repetitive 
search it also adopts a pruning strategy names 
promotion, which is similar to Children-Parent 
Equivalence pruning to greatly reduce the search 
space. 
 
Algorithm 3: (POC-tree construction [11]) 
 
Input: A transaction database DB and a minimum 
support n. 
Output: A POC-tree and F1 (the set of frequent 1-
itemsets). 
 
1. [Frequent 1-itemsets Generation] 
According to n, scan DB once to find F1, the set of 
frequent 1-itemsets (frequent items), and their 
supports.  
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Sort F1 in support descending order as L1, which is 
the list of ordered frequent items. Note that, if the 
supports of some frequent items are equal, the orders 
can be assigned arbitrarily. 
 
2. [POC-tree Construction] 
The following procedure of construction POC-tree is 
the same as that of constructing a FP-tree (Han, Pei, 
& Yin,2000). 
Create the root of a POC-tree, Tr, and label it as 
‘‘null’’. 
For each transaction Trans in DB do the following. 
Select the frequent items in Trans and sort out them 
according to the order of F1.  
Let the sorted frequent-item list in Trans be [p | P], 
where p is the first element and P is 
the remaining list.  
Call insert tree ([p | P], Tr). 
The function insert tree([p | P], Tr) is performed as 
follows. 
If Tr has a child N such that N.item-name = p.item-
name,then increase N’s count by 1; 
else create a new node N, with its count initialized to 
1,and add it to Tr’s children-list.  
If P is nonempty, call insert tree(P, N) recursively. 
 
3. [Pre-code Generation] 
Scan the POC-tree to generate the pre-order of each 
node by the pre-order traversal. 
 
Algorithm 4: FIN algorithm [11] 
 
Input: A transaction database DB and a minimum 
support n. 
Output: F, the set of all frequent itemsets. 
(1) F £; 
(2) Call Algorithm 3 to construct the POC-tree and 
find F1, the set of all frequent 1-itemset; 
(3) F2 £; 
(4) Scan the POC-tree by the pre-order traversal do 
(5) N currently visiting Node; 
(6) iy the item registered in N; 
(7) For each ancestor of N, Na, do 
(8) ix the item registered in Na; 
(9) If ixiy 2 F2, then 
(10) ixiy.supportixiy.support + N.account; 
(11) Else 
(12) ixiy.supportN.account; 
(13) F2 F2[ {ixiy}; 
(14) Endif 
(15) Endfor 
(16) For each itemset, P, in F2 do 
(17) If P.support< n |DB|, then 
(18) F2 F2{P}; 
(19) Else 
(20) P. Nodeset £; 
(21) Endif 

(22) Endfor 
(23) Scan the POC-tree by the pre-order traversal do 
(24) Nd currently visiting Node; 
(25) iy the item registered in Nd; 
(26) For each ancestor of Nd, Nda, do 
(27) ix the item registered in Nda; 
(28) If ixiy 2 F2, then 
(29) ixiy.Nodesetixiy.Nodeset [ Nd.N_info; 
(30) Endif 
(31) Endfor 
(32) F F[ F1; 
(33) For each frequent itemset, isit, in F2 do 
(34) Create the root of a tree, Rst, and label it by isit; 
(35) Constructing_Pattern_Tree(Rst, {i | i 2 F1, i 
                                                           is}, £); 
(36) Endfor 
(37) Return F; 
 

2.2. Select input data: 

  
Primary source of data is Amazon [13], this dataset 
contains product reviews and metadata, including 
143.7 million reviews spanning May 1996 - July 2014. 
Out of these huge data we obtain cell phone and its 
Accessories review data, from which we obtain 
approximately 1000 reviews. Product in this site has 
large number of reviews. To obtain this data, we 
started with a list of asin like strings (Amazon product 
identifiers) obtained from the Internet Archive. 
Sample review is as shown below. This large data file 
can be open using Log Expert tool. This tool 
downloaded from website [14]. This dataset is a 
superset of existing publicly-available Amazon 
datasets. Out of above fields we used reviewText (text 
of the review) as input field in our analysis. 
 
{ "reviewerID": "A2SUAM1J3GNN3B", "asin": 
"0000013714", "reviewerName": "J. McDonald", 
"helpful": [2, 3], "reviewText": "I bought this for my 
husband who plays the piano. He is having a 
wonderful time playing these old hymns. The  
is at times hard to read because we think the book was 
published for singing from more than playing from. 
Great purchase though!", "overall": 5.0, "summary": 
"Heavenly Highway Hymns", "unixReviewTime": 
1252800000, "reviewTime": "09 13, 2009" } 

where 

• reviewerID - ID of the reviewer, 
e.g. A1RSDE90N6RSZF 

• asin - ID of the product, e.g. 0000013714 

• reviewerName - name of the reviewer 

• helpful - helpfulness rating of the review, 
e.g. 2/3 

• reviewText - text of the review 
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• overall - rating of the product 

• summary - summary of the review 

• unixReviewTime - time of the review 
(unix time) 

• reviewTime - time of the review (raw) 

2.3.  Text to Transaction Processing with Data 
cleansing 

This involves cleaning the extracted data before the 
analysis is performed. Here we are using custom logic 
to keep only relevant words in review before 
converting into transactions. Usually this involves 
identifying and eliminating non textual content from 
the textual dataset, and any information that can reveal 
the identities of reviewers including: reviewer name, 
reviewer location, review date etc. 
We have prepared relevant word dictionary to 
compare this input text data. This word dictionary 
dataset has been downloaded from website [15-16]. 
This data is converted into input transaction file 
format as a text file. An item is represented by a 
positive integer. A transaction is a line in the text file. 
In each line (transaction), items are separated by a 
single space. It is assumed that all items within a same 
transaction (line) are sorted according to a total order 
(e.g. ascending order) and that no item can appear 
twice within the same line. 

2.4.   Transaction to word mapping 

After data cleansing is done, all the words are assigned 
a transaction id and number of times such word occurs 
in given review. Number of occurrences defines the 
frequency of such word. 
let’s say "Good" word is found in a review, so during 
text to transaction processing, it is given a number  '4', 
now an entry will be made into a dictionary as 
<4,"GOOD">. 
When Good word is found multiple times, e.g. 8 times 
we can say transaction 4 occurs 8 times in given 
reviews. Hence, in a different collection, this 
transaction will be represented as <4, 8> = 
><transactionId, Frequency>. Hence while mapping 
Frequency back to word we can say word "GOOD" 
with transactionId 4 occurs 8 times. 
 

2.5.   Run selected algorithm 

The output file format is also defined as a text file, 
where each line represents a frequent itemset. On each 
line, the items of the itemset are first listed. Each item 

is represented by an integer and it is followed by a 
single space. After, all the items, the keyword 
"SUPP:" appears, which is followed by an integer 
indicating the support of the itemset, expressed as a 
number of transactions. For example, here fig. 2 is the 
output file for this example. The first line indicates the 
frequent itemset consisting of the item 5 and it 
indicates that this itemset has a support of 2971 
transactions. 
 

 
Fig. 2.  Output File 

2.6.   Algorithm run statistics 

Both the program output statistics as displayed below 
fig. 3 and fig. 4 were found with minimum support 
taken as 0.5% and with the help of transaction to word 
mapping dataset.This algorithm output statistics data 
file is stored in dataset. 
 

 
Fig. 3.  FP-Growth output 
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Fig. 4.  FIN output 

2.7.  Comparisons of algorithms 

The results of both these algorithms are stored in 
database. Comparison is based on memory usage V/S 
time taken by both algorithms to execute as displayed 
below fig. 5. 

 

 
Fig. 5.  Comparison of FIN v/s FP Growth output 

3. CONCLUSION    

Sentiment analysis, a large majority of studies focus 
on identifying the polarity of a given text, that is to 
automatically identify if a review about a certain topic 
is positive or negative. 

In this paper we have found this polarity by finding 
frequent itemset using proposed FP-growth and FIN 
method by making variation in Apriori.  
The method, described here is very simple and 
efficient one. This is successfully tested for large data, 
downloaded from Amazon. We have computed 
performance comparison by comparing both 
algorithms. The experimental result shows that FIN is 
more efficient in terms of memory consumption but 
more execution time taken compared to FP-growth.  
Whereas both algorithms improves performance over 
Apriori for lower cardinality and it does not follow 
generation of candidate-and-test method. It also 
reduces the scanning of database and needs only two 
scanning of database.  
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